翻訳と辞書 |
Necklace ring : ウィキペディア英語版 | Necklace ring In mathematics, the necklace ring is a ring introduced by . ==Definition==
If ''A'' is a commutative ring then the necklace ring over ''A'' consists of all infinite sequences (''a''1,''a''2,...) of elements of ''A''. Addition in the necklace ring is given by pointwise addition of sequences. Multiplication is given by a sort of arithmetic convolution: the product of (''a''1,''a''2,...) and (''b''1,''b''2,...) has components : where () is the least common multiple of ''i'' and ''j'', and (''i'',''j'') is their highest common factor.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Necklace ring」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|